

Seasonal and Spatial Variability of pCO2 and Total Alkalinity in the North Sea – Observations from Continuous FerryBox Measurements

FerryBoxes in the North Sea operated by Helmholtz-Zentrum Geesthacht (HZG)

until end of 2018

Route M/V Lysbris since January 2019

Carbonate System Instruments

pCO₂ Sensor: CONTROS HydroC CO₂-FT

Principle and Specifications:

- Membrane based system
- Detector: optical analyzing NDIR system
- Measuring range: 200 1000 µatm
- Resolution: < 1 µatm
- Initial accuracy: ± 0.5 % of reading
- Calibration: manufacturer (yearly)
- Using calibration gases not possible
- Zero drift control: regular zero measurements (~6h)

TA Analyser: CONTROS HydroC CO₂-FT

Principle and Specifications:

- Acidification of seawater by injection of hydrochloric acid (HCI)
- CO2 removal by a degassing unit (open-cell titration)
- Subsequent pH determination by VIS absorption spectrometry (indicator dye Bromocresol green)
- Calculation of TA using T & S from sample water
- Dynamic range 400 µmol/kg
- Accuracy: ±25 µmol kg-1
- Precision: ±5 µmol kg-1
- Measuring cycle ~10 min

Carbon exchanges between a shelf sea (North Sea) and its intertidal coastal region (Wadden Sea)

CONTROS HydroFIA TA Total Alkalinity Analyser

Northern Route

Southern Route

Voynova et al., Limnol. Oceanogr. 2018

Seasonal and regional variability

Seasonal and regional variability

Estimated TA Fluxes

Longitude (°E)	Intercept (µmol kg ⁻¹)	Slope (µmol kg ⁻¹ d ⁻¹)	Depth (m)	Temperature (°C)	Density (kg m ⁻³)	TA flux (mmol m ⁻² d ⁻¹)
1.8-2.0	2172.8 ± 5.1	0.57 ± 0.03	20	15	1028	11.7 ± 0.6
4.8-5.0	2174.0 ± 6.6	0.88 ± 0.05	20	15	1027	18.0 ± 1.0
6.8–7.0	2198.4 ± 4.2	1.10 ± 0.03	20	15	1026	22.7 ± 0.6
7.8-8.0	2165.3 ± 5.9	1.31 ± 0.04	20	15	1024	26.8 ± 0.9

Voynova et al., Limnol. Oceanogr. 2018

Conclusions TA Measurements

- HydroFIA TA was successfully operated with a FerryBox
- Total alkalinity (TA) did not follow salinity pattern
 - Seasonal increase of 100-200 µmol kg-1, spring to summer-fall
 - Influence from the Wadden Sea, mediated by tidal flow
- Further studies required to quantify the role of the Wadden Sea and the potential for net TA production

Time Series of pCO2 Measurements in the Southern and Central North Sea

Time series at certain positions

△-pCO2 at Different Seasons

Conclusions pCO2 Measurements in the North Sea

- FerryBox systems are a mature tool to continuously measure carbon related parameters like pH and pCO₂ along large sections of the southern and central North Sea.
- Data sets provide a detailed picture of the carbon dynamics in surface waters in different regions, in different years and at different seasons.
- Difference of pCO₂ between the atmosphere and the sea surface (∆pCO₂) reveals a
 distinct behavior of shallow well mixed regions and deeper, stratified areas in the summer:
 - pCO₂ is undersaturated
 - during spring along all routes
 - in autumn in the region of the DoggerBank
 - pCO₂ is supersaturated
 - in summer in the English Chanel region and Dogger Bank
 - in autumn in Southern Central North Sea
- Different years depict different behavior. In 2018 and partly 2014 were extraordinary years with stronger and longer lasting negative gradients
- The measurement of pCO₂ can be combined with dissolved oxygen measurements to potentially derive a time series of productivity estimates along these transects.
- Carbon system measurements will be continued & complemented by a combination of high precision spectrophotometric pH sensor + Isfet Sensor

Thanks for your attention!

JERICO-NEXT:

www.jerico-fp7.eu/

NEXOS:

www.nexosproject.eu

European FerryBox database:

http://ferrydata.hzg.de

Recent Total Alkalinity Data (Feb&Mar 2019) (M/V Lysbris)

Seasonal Behaviour of pCO2 and Oxygen Saturation

Comparison of Seasonal Behaviour of pCO2 and Oxygen Saturation

Comparison of Seasonal Behaviour of pCO2 and Oxygen Saturation

Comparison of Seasonal Behaviour of pCO2 and Oxygen Saturation

Introduction

Voynova et al., May 30, 2018, HZG

Carbonate System

